Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
ACS Pharmacol Transl Sci ; 3(6): 1278-1292, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2228211

RESUMEN

The urgent need for a cure for early phase COVID-19 infected patients critically underlines drug repositioning strategies able to efficiently identify new and reliable treatments by merging computational, experimental, and pharmacokinetic expertise. Here we report new potential therapeutics for COVID-19 identified with a combined virtual and experimental screening strategy and selected among already approved drugs. We used hydroxychloroquine (HCQ), one of the most studied drugs in current clinical trials, as a reference template to screen for structural similarity against a library of almost 4000 approved drugs. The top-ranked drugs, based on structural similarity to HCQ, were selected for in vitro antiviral assessment. Among the selected drugs, both zuclopenthixol and nebivolol efficiently block SARS-CoV-2 infection with EC50 values in the low micromolar range, as confirmed by independent experiments. The anti-SARS-CoV-2 potential of ambroxol, amodiaquine, and its active metabolite (N-monodesethyl amodiaquine) is also discussed. In trying to understand the "hydroxychloroquine" mechanism of action, both pK a and the HCQ aromatic core may play a role. Further, we show that the amodiaquine metabolite and, to a lesser extent, zuclopenthixol and nebivolol are active in a SARS-CoV-2 titer reduction assay. Given the need for improved efficacy and safety, we propose zuclopenthixol, nebivolol, and amodiaquine as potential candidates for clinical trials against the early phase of the SARS-CoV-2 infection and discuss their potential use as adjuvant to the current (i.e., remdesivir and favipiravir) COVID-19 therapeutics.

2.
Nucleic Acids Res ; 51(D1): D1276-D1287, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2189411

RESUMEN

DrugCentral monitors new drug approvals and standardizes drug information. The current update contains 285 drugs (131 for human use). New additions include: (i) the integration of veterinary drugs (154 for animal use only), (ii) the addition of 66 documented off-label uses and iii) the identification of adverse drug events from pharmacovigilance data for pediatric and geriatric patients. Additional enhancements include chemical substructure searching using SMILES and 'Target Cards' based on UniProt accession codes. Statistics of interests include the following: (i) 60% of the covered drugs are on-market drugs with expired patent and exclusivity coverage, 17% are off-market, and 23% are on-market drugs with active patents and exclusivity coverage; (ii) 59% of the drugs are oral, 33% are parenteral and 18% topical, at the level of the active ingredients; (iii) only 3% of all drugs are for animal use only; however, 61% of the veterinary drugs are also approved for human use; (iv) dogs, cats and horses are by far the most represented target species for veterinary drugs; (v) the physicochemical property profile of animal drugs is very similar to that of human drugs. Use cases include azaperone, the only sedative approved for swine, and ruxolitinib, a Janus kinase inhibitor.


Asunto(s)
Aprobación de Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Drogas Veterinarias , Animales , Humanos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/veterinaria , Drogas Veterinarias/administración & dosificación , Drogas Veterinarias/efectos adversos , Uso Fuera de lo Indicado/veterinaria
3.
JMIR Med Educ ; 8(1): e23845, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1705374

RESUMEN

BACKGROUND: On March 11, 2020, the New Mexico Governor declared a public health emergency in response to the COVID-19 pandemic. The New Mexico medical advisory team contacted University of New Mexico (UNM) faculty to form a team to consolidate growing information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its disease to facilitate New Mexico's pandemic management. Thus, faculty, physicians, staff, graduate students, and medical students created the "UNM Global Health COVID-19 Intelligence Briefing." OBJECTIVE: In this paper, we sought to (1) share how to create an informative briefing to guide public policy and medical practice and manage information overload with rapidly evolving scientific evidence; (2) determine the qualitative usefulness of the briefing to its readers; and (3) determine the qualitative effect this project has had on virtual medical education. METHODS: Microsoft Teams was used for manual and automated capture of COVID-19 articles and composition of briefings. Multilevel triaging saved impactful articles to be reviewed, and priority was placed on randomized controlled studies, meta-analyses, systematic reviews, practice guidelines, and information on health care and policy response to COVID-19. The finalized briefing was disseminated by email, a listserv, and posted on the UNM digital repository. A survey was sent to readers to determine briefing usefulness and whether it led to policy or medical practice changes. Medical students, unable to partake in direct patient care, proposed to the School of Medicine that involvement in the briefing should count as course credit, which was approved. The maintenance of medical student involvement in the briefings as well as this publication was led by medical students. RESULTS: An average of 456 articles were assessed daily. The briefings reached approximately 1000 people by email and listserv directly, with an unknown amount of forwarding. Digital repository tracking showed 5047 downloads across 116 countries as of July 5, 2020. The survey found 108 (95%) of 114 participants gained relevant knowledge, 90 (79%) believed it decreased misinformation, 27 (24%) used the briefing as their primary source of information, and 90 (79%) forwarded it to colleagues. Specific and impactful public policy decisions were informed based on the briefing. Medical students reported that the project allowed them to improve on their scientific literature assessment, stay current on the pandemic, and serve their community. CONCLUSIONS: The COVID-19 briefings succeeded in informing and guiding New Mexico policy and clinical practice. The project received positive feedback from the community and was shown to decrease information burden and misinformation. The virtual platforms allowed for the continuation of medical education. Variability in subject matter expertise was addressed with training, standardized article selection criteria, and collaborative editing led by faculty.

4.
Curr Protoc ; 2(1): e355, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1653213

RESUMEN

The Illuminating the Druggable Genome (IDG) consortium is a National Institutes of Health (NIH) Common Fund program designed to enhance our knowledge of under-studied proteins, more specifically, proteins unannotated within the three most commonly drug-targeted protein families: G-protein coupled receptors, ion channels, and protein kinases. Since 2014, the IDG Knowledge Management Center (IDG-KMC) has generated several open-access datasets and resources that jointly serve as a highly translational machine-learning-ready knowledgebase focused on human protein-coding genes and their products. The goal of the IDG-KMC is to develop comprehensive integrated knowledge for the druggable genome to illuminate the uncharacterized or poorly annotated portion of the druggable genome. The tools derived from the IDG-KMC provide either user-friendly visualizations or ways to impute the knowledge about potential targets using machine learning strategies. In the following protocols, we describe how to use each web-based tool to accelerate illumination in under-studied proteins. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Interacting with the Pharos user interface Basic Protocol 2: Accessing the data in Harmonizome Basic Protocol 3: The ARCHS4 resource Basic Protocol 4: Making predictions about gene function with PrismExp Basic Protocol 5: Using Geneshot to illuminate knowledge about under-studied targets Basic Protocol 6: Exploring under-studied targets with TIN-X Basic Protocol 7: Interacting with the DrugCentral user interface Basic Protocol 8: Estimating Anti-SARS-CoV-2 activities with DrugCentral REDIAL-2020 Basic Protocol 9: Drug Set Enrichment Analysis using Drugmonizome Basic Protocol 10: The Drugmonizome-ML Appyter Basic Protocol 11: The Harmonizome-ML Appyter Basic Protocol 12: GWAS target illumination with TIGA Basic Protocol 13: Prioritizing kinases for lists of proteins and phosphoproteins with KEA3 Basic Protocol 14: Converting PubMed searches to drug sets with the DrugShot Appyter.


Asunto(s)
Bases de Datos Genéticas , Genoma , COVID-19 , Humanos , Aprendizaje Automático , Proteínas , SARS-CoV-2
5.
J Chem Inf Model ; 62(3): 718-729, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1641823

RESUMEN

In the event of an outbreak due to an emerging pathogen, time is of the essence to contain or to mitigate the spread of the disease. Drug repositioning is one of the strategies that has the potential to deliver therapeutics relatively quickly. The SARS-CoV-2 pandemic has shown that integrating critical data resources to drive drug-repositioning studies, involving host-host, host-pathogen, and drug-target interactions, remains a time-consuming effort that translates to a delay in the development and delivery of a life-saving therapy. Here, we describe a workflow we designed for a semiautomated integration of rapidly emerging data sets that can be generally adopted in a broad network pharmacology research setting. The workflow was used to construct a COVID-19 focused multimodal network that integrates 487 host-pathogen, 63 278 host-host protein, and 1221 drug-target interactions. The resultant Neo4j graph database named "Neo4COVID19" is made publicly accessible via a web interface and via API calls based on the Bolt protocol. Details for accessing the database are provided on a landing page (https://neo4covid19.ncats.io/). We believe that our Neo4COVID19 database will be a valuable asset to the research community and will catalyze the discovery of therapeutics to fight COVID-19.


Asunto(s)
COVID-19 , Reposicionamiento de Medicamentos , Humanos , Farmacología en Red , Pandemias , SARS-CoV-2 , Flujo de Trabajo
7.
PLoS Comput Biol ; 17(7): e1009183, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1309945

RESUMEN

Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in December 2019 in Wuhan, China. It was quickly established that both the symptoms and the disease severity may vary from one case to another and several strains of SARS-CoV-2 have been identified. To gain a better understanding of the wide variety of SARS-CoV-2 strains and their associated symptoms, thousands of SARS-CoV-2 genomes have been sequenced in dozens of countries. In this article, we introduce COVIDomic, a multi-omics online platform designed to facilitate the analysis and interpretation of the large amount of health data collected from patients with COVID-19. The COVIDomic platform provides a comprehensive set of bioinformatic tools for the multi-modal metatranscriptomic data analysis of COVID-19 patients to determine the origin of the coronavirus strain and the expected severity of the disease. An integrative analytical workflow, which includes microbial pathogens community analysis, COVID-19 genetic epidemiology and patient stratification, allows to analyze the presence of the most common microbial organisms, their antibiotic resistance, the severity of the infection and the set of the most probable geographical locations from which the studied strain could have originated. The online platform integrates a user friendly interface which allows easy visualization of the results. We envision this tool will not only have immediate implications for management of the ongoing COVID-19 pandemic, but will also improve our readiness to respond to other infectious outbreaks.


Asunto(s)
COVID-19/epidemiología , Nube Computacional , Biología Computacional/métodos , Interfaz Usuario-Computador , COVID-19/genética , COVID-19/fisiopatología , COVID-19/virología , Humanos , Factores de Riesgo , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad
8.
Chem Soc Rev ; 50(16): 9121-9151, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1294509

RESUMEN

COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought the most severe disruptions to societies and economies since the Great Depression. Massive experimental and computational research effort to understand and characterize the disease and rapidly develop diagnostics, vaccines, and drugs has emerged in response to this devastating pandemic and more than 130 000 COVID-19-related research papers have been published in peer-reviewed journals or deposited in preprint servers. Much of the research effort has focused on the discovery of novel drug candidates or repurposing of existing drugs against COVID-19, and many such projects have been either exclusively computational or computer-aided experimental studies. Herein, we provide an expert overview of the key computational methods and their applications for the discovery of COVID-19 small-molecule therapeutics that have been reported in the research literature. We further outline that, after the first year the COVID-19 pandemic, it appears that drug repurposing has not produced rapid and global solutions. However, several known drugs have been used in the clinic to cure COVID-19 patients, and a few repurposed drugs continue to be considered in clinical trials, along with several novel clinical candidates. We posit that truly impactful computational tools must deliver actionable, experimentally testable hypotheses enabling the discovery of novel drugs and drug combinations, and that open science and rapid sharing of research results are critical to accelerate the development of novel, much needed therapeutics for COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Simulación por Computador , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos , Antivirales/uso terapéutico , COVID-19/virología , Ensayos Clínicos como Asunto , Humanos , Pandemias , SARS-CoV-2/efectos de los fármacos
10.
Nucleic Acids Res ; 49(D1): D1160-D1169, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: covidwho-910390

RESUMEN

DrugCentral is a public resource (http://drugcentral.org) that serves the scientific community by providing up-to-date drug information, as described in previous papers. The current release includes 109 newly approved (October 2018 through March 2020) active pharmaceutical ingredients in the US, Europe, Japan and other countries; and two molecular entities (e.g. mefuparib) of interest for COVID19. New additions include a set of pharmacokinetic properties for ∼1000 drugs, and a sex-based separation of side effects, processed from FAERS (FDA Adverse Event Reporting System); as well as a drug repositioning prioritization scheme based on the market availability and intellectual property rights forFDA approved drugs. In the context of the COVID19 pandemic, we also incorporated REDIAL-2020, a machine learning platform that estimates anti-SARS-CoV-2 activities, as well as the 'drugs in news' feature offers a brief enumeration of the most interesting drugs at the present moment. The full database dump and data files are available for download from the DrugCentral web portal.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Bases de Datos Farmacéuticas/estadística & datos numéricos , Aprobación de Drogas/estadística & datos numéricos , Descubrimiento de Drogas/estadística & datos numéricos , Reposicionamiento de Medicamentos/estadística & datos numéricos , SARS-CoV-2/efectos de los fármacos , Antivirales/efectos adversos , Antivirales/farmacocinética , COVID-19/epidemiología , COVID-19/virología , Aprobación de Drogas/métodos , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos/métodos , Epidemias , Europa (Continente) , Humanos , Almacenamiento y Recuperación de la Información/métodos , Internet , Japón , SARS-CoV-2/fisiología , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA